## Vassalpro

## AssayMax ${ }^{\text {M }}$ Human Adiponectin ELISA Kit

Assaypro LLC<br>3400 Harry S Truman Blvd<br>St. Charles, MO 63301<br>T (636) 447-9175<br>F (636) 395-7419<br>www.assaypro.com

Thank you for choosing Assaypro.

## Assay Summary

Step 1. Add $50 \mu$ l of Standard or Sample per well.
Incubate 1 hour.
Step 2. Wash, then add $50 \mu \mathrm{l}$ of Biotinylated Antibody per well. Incubate 1 hour.

Step 3. Wash, then add $50 \mu \mathrm{l}$ of SP Conjugate per well. Incubate 30 minutes.

Step 4. Wash, then add $50 \mu \mathrm{l}$ of Chromogen Substrate per well. Incubate 30 minutes.

Step 5. Add $50 \mu \mathrm{l}$ of Stop Solution per well.
Read at 450 nm immediately.

## Symbol Key



Consult instructions for use.

Assay Template

| $\underset{\sim}{\sim}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\cdots$ |  |  |  |  |  |  |  |  |
| $\bigcirc$ |  |  |  |  |  |  |  |  |
| の |  |  |  |  |  |  |  |  |
| $\infty$ |  |  |  |  |  |  |  |  |
| N |  |  |  |  |  |  |  |  |
| $\bullet$ |  |  |  |  |  |  |  |  |
| ก |  |  |  |  |  |  |  |  |
| * |  |  |  |  |  |  |  |  |
| m |  |  |  |  |  |  |  |  |
| N |  |  |  |  |  |  |  |  |
| $\checkmark$ |  |  |  |  |  |  |  |  |
|  | < | $\infty$ | $\cup$ | - | ш | แ | $\bigcirc$ | エ |

# AssayMax ${ }^{\text {TM }}$ Human Adiponectin (ACRP30) ELISA Kit 

Catalog No. EA2500-8<br>Sample insert for reference use only<br>Positive and Low Controls Included

## Introduction

Adiponectin, also known as adipocyte complement-related 30 kDa protein (ACRP30), is a secreted serum protein expressed exclusively in differentiated adipocytes. Studies indicate that decreased plasma adiponectin concentration is associated with obesity, insulin resistance (1), essential hypertension (2), inflammation and atherosclerosis (3), and acute myocardial infarction (4). On the other hand, an increased adiponectin level leads to nephrotic syndrome (5-6).

## Principle of the Assay

The AssayMax ${ }^{\text {TM }}$ Human Adiponectin ELISA (Enzyme-Linked Immunosorbent Assay) Kit is designed for detection of adiponectin in human plasma, serum, milk, urine, saliva, CSF, and cell culture samples. This assay employs a quantitative sandwich enzyme immunoassay technique that measures human adiponectin in approximately 3 hours. A polyclonal antibody specific for human adiponectin has been pre-coated onto a 96 -well microplate with removable strips. Adiponectin in standards and samples is sandwiched by the immobilized antibody and a biotinylated polyclonal antibody specific for human adiponectin, which is recognized by a streptavidin-peroxidase (SP) conjugate. All unbound material is washed away and a peroxidase enzyme substrate is added. The color development is stopped and the intensity of the color is measured.

## Caution and Warning

- This product is for Research Use Only and is not intended for use in diagnostic procedures.
- Prepare all reagents (diluent buffer, wash buffer, standard, biotinylated antibody, and SP conjugate), as instructed, prior to running the assay.
- Prepare all samples prior to running the assay. The dilution factors for the samples are suggested in this insert. However, the user should determine the optimal dilution factor.
- Spin down the SP conjugate vial, the biotinylated antibody vial, and the standard diluent vial before opening and using contents.
- The Stop Solution is an acidic solution.
- The kit should not be used beyond the expiration date.


## Reagents

- Human Adiponectin Microplate: A 96-well polystyrene microplate (12 strips of 8 wells) coated with a polyclonal antibody against human adiponectin.
- Sealing Tapes: Each kit contains 3 precut, pressure sensitive sealing tapes that can be cut to fit the format of the individual assay.
- Human Adiponectin Standard: Human adiponectin in a buffered protein base ( 50 ng, lyophilized).
- Biotinylated Human Adiponectin Antibody (50x): A 50-fold concentrated biotinylated polyclonal antibody against human adiponectin (120 $\mu \mathrm{l}$ ).
- MIX Diluent Concentrate (10x): A 10-fold concentrated buffered protein base ( 30 ml ).
- Standard Diluent (1x): A buffered protein base with stabilizer ( 2 ml ).
- Wash Buffer Concentrate (20x): A 20-fold concentrated buffered surfactant ( $30 \mathrm{ml}, 2$ bottles).
- SP Conjugate (100x): A 100-fold concentrate ( $80 \mu \mathrm{l}$ ).
- Chromogen Substrate (1x): A stabilized peroxidase chromogen substrate tetramethylbenzidine ( 7 ml ).
- Stop Solution (1x): A 0.5 N hydrochloric acid solution to stop the chromogen substrate reaction ( 11 ml ).
- Positive Control: 1 vial, lyophilized. See insert CEA25001.
- Low Control: 1 vial, lyophilized. See insert CEA25002.


## Storage Condition

- Upon arrival, immediately store components of the kit at recommended temperatures up to the expiration date.
- Store Standard, SP Conjugate, and Biotinylated Antibody at $-20^{\circ} \mathrm{C}$.
- Store Microplate, Diluent Concentrate (10x), Standard Diluent (1x), Wash Buffer, Stop Solution, and Chromogen Substrate at $2-8^{\circ} \mathrm{C}$.
- Unused microplate wells may be returned to the foil pouch with the desiccant packs and resealed. May be stored for up to 30 days in a vacuum desiccator.


## Other Supplies Required

- Microplate reader capable of measuring absorbance at 450 nm
- Pipettes (1-20 $\mu \mathrm{l}, 20-200 \mu \mathrm{l}, 200-1000 \mu \mathrm{l}$, and multiple channel)
- Deionized or distilled reagent grade water


## Sample Collection, Preparation, and Storage

- Plasma: Collect plasma using one-tenth volume of 0.1 M sodium citrate as an anticoagulant. Centrifuge samples at $3000 \times g$ for 10 minutes and collect plasma. A 2000-fold sample dilution is suggested into MIX Diluent; however, user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at $-20^{\circ} \mathrm{C}$ or below for up to 3 months. Avoid repeated freeze-thaw cycles (EDTA or Heparin can also be used as an anticoagulant).
- Serum: Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at $3000 \times g$ for 10 minutes and remove serum. A 2000 -fold sample dilution is suggested into MIX Diluent; however, user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at $-20^{\circ} \mathrm{C}$ or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- Milk: Collect milk using sample tube. Centrifuge samples at $800 \times g$ for 10 minutes. A 2 -fold sample dilution is suggested into MIX Diluent or within the range of $1 x-10 x$; however, user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at $-20^{\circ} \mathrm{C}$ or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- Urine: Collect urine using sample pot. Centrifuge samples at $800 \times g$ for 10 minutes. The sample is suggested for use at $1 x$ or within the range of $2 x-10 x$ into MIX Diluent; however, user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at $-20^{\circ} \mathrm{C}$ or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- Saliva: Collect saliva using sample tube. Centrifuge samples at $800 \times g$ for 10 minutes. The sample is suggested for use at 1 x or within the range of $2 x-10 x$ into MIX Diluent; however, user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at $-20^{\circ} \mathrm{C}$ or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- CSF: Collect cerebrospinal fluid (CSF) using sample pot. Centrifuge samples at $3000 \times g$ for 10 minutes. A 2 -fold sample dilution is suggested into MIX Diluent or within the range of $1 x-10 x$; however, user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at $-80^{\circ} \mathrm{C}$ for up to 3 months. Avoid repeated freeze-thaw cycles.
- Cell Culture Supernatant: Centrifuge cell culture media at 1500 rpm for 10 minutes at $4^{\circ} \mathrm{C}$ to remove debris and collect supernatant. If necessary, dilute samples into MIX Diluent; user should determine optimal dilution
factor depending on application needs. The undiluted samples can be stored at $-80^{\circ} \mathrm{C}$. Avoid repeated freeze-thaw cycles.

Applicable samples may also include biofluids, cell culture, and tissue homogenates. If necessary, user should determine optimal dilution factor depending on application needs.

Refer to Dilution Guidelines for further instruction.

| Guidelines for Dilutions of $\mathbf{1 0 0}$-fold or Greater <br> (for reference only; please follow the insert for specific dilution suggested) |  |  |  |
| :---: | :---: | :---: | :---: |
|  | 100x |  | 10000x |
| A) | $4 \mu$ l sample : $396 \mu$ l buffer (100x) $=100$-fold dilution <br> Assuming the needed volume is less than or equal to $400 \mu$ l. | A) <br> B) | $4 \mu$ l sample : $396 \mu$ l buffer (100x) <br> $4 \mu$ l of A: $396 \mu$ l buffer (100x) $=10000$-fold dilution <br> Assuming the needed volume is less than or equal to $400 \mu$ l. |
|  | 1000x |  | 100000x |
| A) | $4 \mu$ l sample : $396 \mu \mathrm{l}$ buffer (100x) <br> $24 \mu$ l of A : $216 \mu \mathrm{l}$ buffer (10x) <br> $=1000$-fold dilution <br> Assuming the needed volume is less than or equal to $240 \mu$ l. | A) B) C) | $4 \mu$ l sample : $396 \mu$ l buffer (100x) <br> $4 \mu$ l of A : $396 \mu$ l buffer (100x) <br> $24 \mu$ l of B : $216 \mu$ l buffer (10x) <br> $=100000$-fold dilution <br> Assuming the needed volume is less than or equal to $240 \mu$ l. |

## Reagent Preparation

- Freshly dilute all reagents and bring all reagents to room temperature before use.
- MIX Diluent Concentrate (10x): Dilute the MIX Diluent Concentrate 10fold with reagent grade water to produce a $1 x$ solution. When diluting the concentrate, make sure to rinse the bottle thoroughly to extract any precipitates left in the bottle. Mix the $1 x$ solution gently until the crystals have completely dissolved. Store for up to 30 days at $2-8^{\circ} \mathrm{C}$.
- Human Adiponectin Standard: Reconstitute the Human Adiponectin Standard ( 50 ng ) with 0.5 ml of Standard Diluent to generate a $100 \mathrm{ng} / \mathrm{ml}$ standard stock solution. Allow the vial to sit for 10 minutes with gentle agitation prior to making dilutions. From the standard stock solution ( $100 \mathrm{ng} / \mathrm{ml}$ ), dilute 4 -fold with MIX Diluent to produce a $25 \mathrm{ng} / \mathrm{ml}$ standard working solution. Prepare duplicate or triplicate standard points by serially diluting the standard working solution ( $25 \mathrm{ng} / \mathrm{ml}$ ) 2-fold with equal volume of MIX Diluent to produce $12.5,6.25,3.125,1.563$, 0.781 , and $0.391 \mathrm{ng} / \mathrm{ml}$ solutions. MIX Diluent serves as the zero standard ( $0 \mathrm{ng} / \mathrm{ml}$ ). Aliquot remaining stock solution to limit repeated
freeze-thaw cycles. This solution should be stored at $-20^{\circ} \mathrm{C}$ and used within 30 days.

| Standard <br> Point | Dilution | [ACRP30] <br> (ng/ml) |
| :---: | :---: | :---: |
| P1 | 1 part Standard (100 ng/mI) + 3 parts MIX Diluent | 25 |
| P2 | 1 part P1 + 1 part MIX Diluent | 12.5 |
| P3 | 1 part P2 + 1 part MIX Diluent | 6.25 |
| P4 | 1 part P3 + 1 part MIX Diluent | 3.125 |
| P5 | 1 part P4 + 1 part MIX Diluent | 1.563 |
| P6 | 1 part P5 + 1 part MIX Diluent | 0.781 |
| P7 | 1 part P6 + 1 part MIX Diluent | 0.391 |
| P8 | MIX Diluent | 0.0 |

- Biotinylated Human Adiponectin Antibody (50x): Spin down the antibody briefly and dilute the desired amount of the antibody 50 -fold with MIX Diluent to produce a $1 x$ solution. The undiluted antibody should be stored at $-20^{\circ} \mathrm{C}$.
- Wash Buffer Concentrate (20x): Dilute the Wash Buffer Concentrate 20fold with reagent grade water to produce a 1 x solution. When diluting the concentrate, make sure to rinse the bottle thoroughly to extract any precipitates left in the bottle. Mix the $1 x$ solution gently until the crystals have completely dissolved.
- SP Conjugate (100x): Spin down the SP Conjugate briefly and dilute the desired amount of the conjugate 100 -fold with MIX Diluent to produce a 1 x solution. The undiluted conjugate should be stored at $-20^{\circ} \mathrm{C}$.


## Assay Procedure

- Prepare all reagents, standard solutions, and samples as instructed. Bring all reagents to room temperature before use. The assay is performed at room temperature $\left(20-25^{\circ} \mathrm{C}\right)$.
- Remove excess microplate strips from the plate frame and return them immediately to the foil pouch with desiccants inside. Reseal the pouch securely to minimize exposure to water vapor and store in a vacuum desiccator.
- Add $50 \mu$ l of Human Adiponectin Standard or sample to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 1 hour. Start the timer after the last addition.
- Wash the microplate manually or automatically using a microplate washer. Invert the plate and decant the contents; hit 4-5 times on absorbent material to completely remove the liquid. If washing manually, wash five times with $200 \mu$ l of Wash Buffer per well. Invert the
plate each time and decant the contents; hit 4-5 times on absorbent material to completely remove the liquid. If using a microplate washer, wash six times with $300 \mu$ l of Wash Buffer per well; invert the plate and hit 4-5 times on absorbent material to completely remove the liquid.
- Add $50 \mu \mathrm{l}$ of Biotinylated Human Adiponectin Antibody to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 1 hour.
- Wash the microplate as described above.
- Add $50 \mu \mathrm{l}$ of SP Conjugate to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 30 minutes. Turn on the microplate reader and set up the program in advance.
- Wash the microplate as described above.
- Add $50 \mu$ l of Chromogen Substrate to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Incubate in ambient light for 30 minutes or until the optimal blue color density develops.
- Add $50 \mu \mathrm{l}$ of Stop Solution to each well. The color will change from blue to yellow. Gently tap plate to ensure thorough mixing. Break any bubbles that may have formed.
- Read the absorbance on a microplate reader at a wavelength of 450 nm immediately. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections. Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at high concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.


## Data Analysis

- Calculate the mean value of the duplicate or triplicate readings for each standard and sample.
- To generate a standard curve, plot the graph using the standard concentrations on the $x$-axis and the corresponding mean 450 nm absorbance (OD) on the $y$-axis. The best fit line can be determined by regression analysis using log-log or four-parameter logistic curve fit.
- Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.


## Typical Data

- The typical data is provided for reference only. Individual laboratory means may vary from the values listed. Variations between laboratories may be caused by technique differences.

| Standard Point | $\mathbf{n g} / \mathrm{ml}$ | OD | Average OD |
| :---: | :---: | :---: | :---: |
| P1 | 25 | 2.358 <br> 2.454 | 2.406 |
| P2 | 12.5 | 1.761 <br> 1.695 | 1.728 |
| P3 | 6.25 | 1.051 <br> 1.043 | 1.047 |
| P4 | 3.125 | 0.634 <br> 0.640 | 0.637 |
| P5 | 1.563 | 0.410 <br> 0.392 | 0.401 |
| P6 | 0.781 | 0.276 <br> 0.256 | 0.266 |
| P7 | 0.391 | 0.183 <br> 0.171 | 0.177 |
| P8 | 0.0 | 0.096 <br> 0.102 | 0.099 |
| Sample: Pooled Normal <br> Sodium Citrate Plasma (2000x) |  | 0.599 <br> 0.555 | 0.577 |
| Sample: Pooled Normal |  |  |  |
| Serum (2000x) |  |  |  |

## Standard Curve

- The curve is provided for illustration only. A standard curve should be generated each time the assay is performed.

Human ACRP30 Standard Curve


## Reference Value

- Normal human adiponectin plasma and serum levels range from $4-28 \mu \mathrm{~g} / \mathrm{ml}$.
- Plasma and serum samples from healthy adults were tested ( $n=40$ ). On average, human adiponectin level was $6.21 \mu \mathrm{~g} / \mathrm{ml}$.

| Sample | $\mathbf{n}$ | Average Value $(\boldsymbol{\mu g} / \mathbf{m l})$ |
| :---: | :---: | :---: |
| Pooled Normal Plasma | 10 | 5.44 |
| Normal Plasma | 20 | 6.08 |
| Pooled Normal Serum | 10 | 7.11 |

## Performance Characteristics

- This assay recognizes both natural and recombinant human adiponectin. It can detect both globular domain and full-length adiponectin.
- The minimum detectable dose of human adiponectin as calculated by 2SD from the mean of a zero standard was established to be $0.22 \mathrm{ng} / \mathrm{ml}$.
- Intra-assay precision was determined by testing three plasma samples twenty times in one assay.
- Inter-assay precision was determined by testing three plasma samples in twenty assays.

|  | Intra-Assay Precision |  |  | Inter-Assay Precision |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sample | 1 | 2 | 3 | 1 | 2 | 3 |  |  |
| n | 20 | 20 | 20 | 20 | 20 | 20 |  |  |
| CV (\%) | $6.2 \%$ | $4.2 \%$ | $5.6 \%$ | $9.8 \%$ | $7.6 \%$ | $8.6 \%$ |  |  |
| Average <br> CV (\%) | $5.3 \%$ |  |  |  |  | $8.7 \%$ |  |  |

## Spiking Recovery

- Recovery was determined by spiking two plasma samples with different adiponectin concentrations.

| SampleUnspiked <br> Sample <br> $(\mathrm{ng} / \mathrm{ml})$ | Spiking <br> Value <br> $(\mathrm{ng} / \mathrm{ml})$ | Expected | Observed | Recovery <br> $(\%)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4.3 | 2.0 | 6.3 | 6.2 | $98 \%$ |
|  |  | 5.0 | 9.3 | 9.6 | $103 \%$ |
|  | 15.0 | 19.3 | 20.3 | $105 \%$ |  |
| 2 | 8.2 | 2.0 | 10.2 | 10.4 | $102 \%$ |
|  |  | 10.2 | 13.2 | 14.3 | $108 \%$ |
|  | 15.0 |  | 23.2 | 25.5 | $110 \%$ |

## Linearity

- Plasma and serum samples were serially diluted to test for linearity.

| Average Percentage of Expected Value (\%) |  |  |
| :---: | :---: | :---: |
| Sample Dilution | Plasma | Serum |
| $1000 x$ | $100 \%$ | $108 \%$ |
| $2000 x$ | $108 \%$ | $97 \%$ |
| $4000 x$ | $92 \%$ | $94 \%$ |

## Cross-Reactivity

| Species | Cross-Reactivity (\%) |
| :---: | :---: |
| Canine | $15 \%$ |
| Bovine | None |
| Equine | $<10 \%$ |
| Monkey | $80 \%$ |
| Mouse | $40 \%$ |
| Rat | $50 \%$ |
| Swine | None |
| Rabbit | None |

- $10 \%$ FBS in culture media will not affect the assay.


## Troubleshooting

| Issue | Causes | Course of Action |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { 든 } \\ & . \frac{1}{y} \\ & \frac{1}{2} \\ & 3 \\ & 0 \end{aligned}$ | Use of improper components | - Check the expiration date listed before use. <br> - Do not interchange components from different lots. |
|  | Improper wash step | - Check that the correct wash buffer is being used. <br> - Check that all wells are empty after aspiration. <br> - Check that the microplate washer is dispensing properly. <br> - If washing by pipette, check for proper pipetting technique. |
|  | Splashing of reagents while loading wells | - Pipette properly in a controlled and careful manner. |
|  | Inconsistent volumes loaded into wells | - Pipette properly in a controlled and careful manner. <br> - Check pipette calibration. <br> - Check pipette for proper performance. |
|  | Insufficient mixing of reagent dilutions | - Thoroughly agitate the lyophilized components after reconstitution. <br> - Thoroughly mix dilutions. |
|  | Improperly sealed microplate | - Check the microplate pouch for proper sealing. <br> - Check that the microplate pouch has no punctures. <br> - Check that three desiccants are inside the microplate pouch prior to sealing. |
|  | Microplate was left unattended between steps | - Each step of the procedure should be performed uninterrupted. |
|  | Omission of step | - Consult the provided procedure for complete list of steps. |
|  | Steps performed in incorrect order | - Consult the provided procedure for the correct order. |
|  | Insufficient amount of reagents added to wells | - Check pipette calibration. <br> - Check pipette for proper performance. |
|  | Wash step was skipped | - Consult the provided procedure for all wash steps. |
|  | Improper wash buffer | - Check that the correct wash buffer is being used. |
|  | Improper reagent preparation | - Consult reagent preparation section for the correct dilutions of all reagents. |
|  | Insufficient or prolonged incubation periods | - Consult the provided procedure for correct incubation time. |
|  | Non-optimal sample dilution | - Sandwich ELISA: If samples generate OD values higher than the highest standard point (P1), dilute samples further and repeat the assay. <br> - Competitive ELISA: If samples generate OD values lower than the highest standard point (P1), dilute samples further and repeat the assay. <br> - User should determine the optimal dilution factor for samples. |
|  | Contamination of reagents | - A new tip must be used for each addition of different samples or reagents during the assay procedure. |
|  | Contents of wells evaporate | - Verify that the sealing film is firmly in place before placing the assay in the incubator or at room temperature. |
|  | Improper pipetting | - Pipette properly in a controlled and careful manner. <br> - Check pipette calibration. <br> - Check pipette for proper performance. |


|  | Insufficient mixing of <br> reagent dilutions | - Thoroughly agitate the lyophilized components after <br> reconstitution. <br> - Thoroughly mix dilutions. |
| :--- | :---: | :---: |

## References

(1) Tsao TS et al. (2002) EJP. 440(2-3):213-221.
(2) Adamczak M et al. (2003) AJH. 16(1):72-75.
(3) Matsubara M et al. (2003) Eur J Endocrinol. 148(6):657-662.
(4) Kojima S et al. (2003) Heart. 89(6):667.
(5) Zoccali C et al. (2003) Kidney Int Suppl. 84:S98-S102.
(6) Pannacciulli N et al. (2003) J Clin Endocrinol Metab. 88(4):174.

Version 7.8-8

